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KEBAKBINTANGAN BEBERAPA PENGOPERASI KAMIRAN
DAN SIFAT SUBKELAS FUNGSI HAMPIR CEMBUNG

ABSTRAK

Disertasi ini mengkaji syarat cukup bagi fungsi analisis bernilai kompleks bak-

bintang dalam cakera unit dan ciri-ciri suatu subkelas fungsi hampir cembung. Suatu

kajian ringkas mengenai konsep asas dan keputusan dari teori fungsi univalent anali-

tik telah diberikan. Syarat cukup bagi fungsi analitik yang tertakrif dalam cakera unit

untuk menjadi bak-bintang peringkat β yang mematuhi ketidaksamaan pembezaan ke-

tiga. Dengan menggunakan ketidaksamaan pembezaan ketiga, kebakbintangan suatu

pengoperasi kamiran akan diperoleh. Keputusan yang diperoleh menyatukan hasil ka-

jian terdahulu. Tambahan pula, suatu subklass fungsi hampir cembung yang baru telah

diperkenalkan dan beberapa keputusan menarik telah diperoleh seperti sifat rangkum-

an, anggaran ketidaksamaan Fekete-Szego bagi fungsi tergolong dalam klass, anggaran

pekali, dan syarat cukup.

vi



STARLIKENESS OF CERTAIN INTEGRAL OPERATORS AND
PROPERTIES OF A SUBCLASS OF CLOSE-TO-CONVEX

FUNCTIONS

ABSTRACT

The present dissertation investigates the sufficient conditions for an analytic func-

tion to be starlike in the open unit disk D and some properties of certain subclass of

close-to-convex functions. A brief survey of the basic concepts and results from the

classical theory of analytic univalent functions are given. Sufficient conditions for ana-

lytic functions satisfying certain third-order differential inequalities to be starlike in D

is derived. As a consequence, conditions for starlikeness of functions defined by triple

integral operators are obtained. Connections are also made to earlier known results.

Furthermore, a new subclass of close-to-convex functions is introduced and studied.

Some interesting results are obtained such as inclusion relationships, an estimate for

the Fekete-Szegö functional for functions belonging to the class, coefficient estimates,

and a sufficient condition.
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CHAPTER 1

INTRODUCTION

1.1 A Short History

Geometric function theory is a branch of complex analysis, which studies the ge-

ometric properties of analytic functions. The theory of univalent functions is one of

the most important subjects in geometric function theory. The study of univalent func-

tions was initiated by Koebe [21] in 1907. One of the major problems in this field had

been the Bieberbach [4] conjecture dating from the year 1916, which asserts that the

modulus of the nth Taylor coefficient of each normalized analytic univalent function

is bounded by n. The conjecture was not completely solved until 1984 by French-

American mathematician Louis de Branges [9].

1.2 Basic Definitions And Properties Of The Class Of Univalent Functions

Let C be the complex plane of complex numbers. A domain is an open connected

subset of C. A domain is said to be simply connected if its complement is connected.

Geometrically, a simply connected domain is a domain without any holes in it. A

complex-valued function f of a complex variable is said to be differentiable at a point

z0 ∈ C if it has a derivative

f ′(z0) = lim
z→z0

f (z)− f (z0)

z− z0

1



at z0. The function f is analytic at z0 if it is differentiable at every point in some

neighborhood of z0. It is one “miracle” of complex analysis that an analytic function f

must have derivatives of all order at z0 and has a Taylor series expansion

f (z) =
∞

∑
n=0

an(z− z0)
n, an =

f (n)(z0)

n!
,

which converges in some open disk centered at z0. It is analytic in a domain if it is

analytic at every point of the domain.

Definition 1.1. [15] A function f on C is said to be univalent (one-to-one) in a domain

D ⊂ C if for z1,z2 ∈ D,

f (z1) = f (z2) ⇒ z1 = z2,

or equivalently

z1 6= z2 ⇒ f (z1) 6= f (z2).

A function f is said to be locally univalent at a point z0 ∈D if it is univalent in some

neighborhood of z0. For analytic functions f , the condition f ′(z0) 6= 0 is equivalent to

local univalence at z0. A function f univalent in a domainD is locally univalent at each

of the points in D, but the converse is not true in general. For example, consider the

function f (z) = z2 in the domain C−{0}. Since f ′(z) = 2z 6= 0 for z 6= 0, it follows

that f (z) = z2 is locally univalent in C−{0}. But f (−z) = (−z)2 = z2 = f (z), so this

function is not univalent in the whole domain C−{0}. However, f (z) = z2 is univalent

on {z ∈ C : ℜz > 0}. (Here, ℜz denote the real part of z.)

Noshiro [36] and Warschawski [56] independently provides a sufficient condition

2



for an analytic function to be univalent in a convex domain D, which is now known

as the Noshiro-Warschawski Theorem. A domain D is convex if the line segment

joining any two points in D lies completely in D, that is, for every z1,z2 ∈ D, we have

z1 + t(z2− z1) ∈ D for 0 ≤ t ≤ 1. Examples of convex domain are circular disk and

half-plane.

Theorem 1.1. (Noshiro-Warschawski Theorem) [36, 56] If f is analytic in a convex

domain D, and ℜ{ f ′} > 0 in D, then f is univalent in D. (Here, ℜ{ f ′} denote the

real part of f ′.)

Proof. We will show that f (z1) 6= f (z2) for all z1,z2 ∈D with z1 6= z2. Choose distinct

points z1,z2 ∈D. SinceD is a convex domain, the straight line segment z = z1+ t(z2−

z1),0 ≤ t ≤ 1, must lie in D. By integrating along this line segment from z1 to z2, we

have

f (z2)− f (z1) =
∫ z2

z1

f ′(z) dz =
∫ 1

0
f ′
(

z1 + t(z2− z1)
)
(z2− z1) dt.

Dividing by z2− z1 and taking the real part, we get

ℜ

{
f (z2)− f (z1)

z2− z1

}
= ℜ

{∫ 1

0
f ′
(

z1 + t(z2− z1)
)

dt

}
.

Since f is analytic in D, f ′ exists and is analytic in D. It is known that an analytic

function is differentiable and continuous in D. It follows that

ℜ

{∫ 1

0
f ′
(

z1 + t(z2− z1)
)

dt

}
=
∫ 1

0
ℜ

{
f ′
(

z1 + t(z2− z1)
)}

dt.

3



Since ℜ{ f ′}> 0 for all z ∈ D, it follows that

ℜ

{
f (z2)− f (z1)

z2− z1

}
=
∫ 1

0
ℜ

{
f ′
(

z1 + t(z2− z1)
)}

dt > 0.

Hence,

f (z2)− f (z1)

z2− z1
6= 0

and so f (z1) 6= f (z2).

Let H denote the class of all analytic functions in the unit disk D := {z ∈ C : |z|<

1}. For a positive integer n and a ∈ C, let

H[a,n] =

{
f ∈H : f (z) = a+

∞

∑
k=n

akzk, z ∈ D

}

and

An =

{
f ∈H : f (z) = z+

∞

∑
k=n+1

akzk, z ∈ D

}
,

withA1 :=A. So,A is the class of analytic functions in D with normalization f (0) = 0

and f ′(0) = 1. The subclass of A consisting of univalent functions is denoted by S.

Example 1.1. An important example of functions in the class S is the Koebe function,

given by

k(z) =
z

(1− z)2 =
∞

∑
n=1

nzn = z+2z2 +3z3 + · · · .

It is easy to verify that the Koebe function is analytic, normalized and univalent

in D. Since the Koebe function is differentiable at every z ∈ D, it follows that Koebe

function is analytic in D. Also, the Koebe function satisfies the condition k(0) = 0 and

4



k′(0) = 1 where k′(z) = (1+ z)/(1− z)3. Hence, the Koebe function is normalized in

D. To see that the Koebe function is univalent in D, suppose that k(z1) = k(z2), that is,

z1

(1− z1)2 =
z2

(1− z2)2 , z1,z2 ∈ D.

After a simple computation, we get

(z1− z2)(1− z1z2) = 0.

Since z1,z2 ∈ D, we have |z1|< 1 and |z2|< 1 and therefore |z1z2|= |z1||z2|< 1. This

shows that 1− z1z2 6= 0 in D. Thus we must have z1− z2 = 0, that is, z1 = z2. So, the

Koebe function, k is univalent in D.

Geometrically, the Koebe function maps D univalently onto the entire complex

plane minus the negative axis from −1/4 to infinity. This can be seen by observing

that the Koebe function can be written as a composition of three univalent analytic

functions, that is,

(u3 ◦u2 ◦u1)(z) =
1
4

[(
1+ z
1− z

)2

−1

]
=

z
(1− z)2 ,

where

u1(z) =
1+ z
1− z

, u2(z) = z2, and u3(z) =
1
4
[z−1].

It is easy to see that u1,u2 and u3 are analytic and they map univalently on this

composition. Since u1 is the quotient of two analytic functions 1+z and 1−z, therefore

it is analytic in D. To see that u1 is univalent in D, suppose that u1(z1) = u1(z2), that

5



is,

1+ z1

1− z1
=

1+ z2

1− z2
, z1,z2 ∈ D.

After simplifying, we obtain z1− z2 = 0 or z1 = z2. Hence, the function u1(z) = (1+

z)/(1− z) is univalent in D. We have

ℜ{u1(z)}= ℜ

{
1+ z
1− z

}
=

1
2

(
1+ z
1− z

+
1+ z
1− z

)
=

1
2

(
1+ z
1− z

+
1+ z
1− z

)
=

1−|z|2

|1− z|2
> 0

for |z| < 1. Since u1(0) = 1, it follows that D is mapped univalently onto the right

half-plane, {z ∈ C : ℜ{z}> 0}, under the mapping u1(z) = (1+ z)/(1− z).

Figure 1.1: The image of unit disk D under the mapping u1(z) = (1+ z)/(1− z). �

Since u2 is the product of two analytic functions z, it follows that u2 is analytic in

the right half plane (a convex domain). For u2(z) = z2, ℜ{z}> 0, we have

ℜ{u′2(z)}= 2ℜ{z}> 0.

Hence, by Noshiro - Warschawski Theorem (Theorem 1.1), the function u2(z) is uni-

valent in the right half plane. Note that the upper right half plane is mapped onto upper

6



half plane, positive real axis is mapped onto positive real axis and the lower right half

plane is mapped onto lower half plane. Note that u2(0) = 0 and the imaginary axis is

mapped onto the negative real axis. Since the origin and the imaginary axis lies out-

side of the right half plane, it follows that the function u2 mapped the right half plane

univalently onto the entire complex plane minus the nonnegative real axis.

Figure 1.2: The image of right half plane under the mapping u2(z) = z2.

Clearly, u3 is analytic in entire complex plane minus the nonnegative real axis. To

see that u3 is univalent, suppose that u3(z1) = u3(z2), that is,

1
4
(z1−1) =

1
4
(z2−1).

After simplifying, we obtain z1− z2 = 0 or z1 = z2. Hence, u3 is univalent in entire

complex plane minus the nonnegative real axis. So, u3 translates the nonnegative real

axis one space to the left and multiplies by a factor of 1/4. Therefore, u3 maps the

entire complex plane except for the nonnegative real axis univalently onto the entire

complex plane minus the negative axis from −1/4 to infinity.

7



Figure 1.3: The image domain under the mapping u3(z) = 1
4(z−1).

For every function f (z) = z+∑
∞
n=2 anzn in S, Bieberbach [4] showed that the sec-

ond coefficient a2 of the series expansion is bounded by 2, which is now known as

Bieberbach’s Theorem.

Theorem 1.2. [4] (Bieberbach’s Theorem) If f (z) = z+∑
∞
n=2 anzn ∈ S, then |a2| ≤ 2,

with equality if and only if f is a rotation of the Koebe function.

The extremal property of the Koebe function tempted Bieberbach [4] to conjecture

that |an| ≤ n holds for all f in S. This conjecture was popularly known as Bieberbach’s

conjecture.

Conjecture 1.1. [4] (Bieberbach’s Conjecture) The coefficients of each function f (z)=

z+∑
∞
n=2 anzn ∈S satisfy |an| ≤ n for n= 2,3, . . . . Strict inequality holds for all n unless

f is the Koebe function or one of its rotations.

The conjecture had been proven for the case n= 2,3,4,5,6 by some researchers be-

fore Louis de Branges [9] proved the general case |an| ≤ n in 1984. This is summarized

in the table below.

8



Researchers Result

Bieberbach [4] (1916) |a2| ≤ 2

Löwner [29] (1923) |a3| ≤ 3

Garabedian and Schiffer [14] (1955) |a4| ≤ 4

Pederson [42] (1968), Ozawa [39] (1969) |a6| ≤ 6

Pederson and Schiffer [41] (1972) |a5| ≤ 5

de Branges [9] (1984) |an| ≤ n

Nowadays, the Bieberbach conjecture is also called the de Branges Theorem.

1.2.1 Function With Positive Real Part And Subordination

Definition 1.2. [15] An analytic function of the form

p(z) = 1+
∞

∑
n=1

cnzn

in D with ℜ{p(z)}> 0 is called a function of positive real part or Carathéodory func-

tion. The set of all functions of positive real part in D is denoted by P.

Example 1.2. The Möbius function

m(z) =
1+ z
1− z

= 1+2z+2z2 + · · ·= 1+2
∞

∑
n=1

zn,

is in the class P since ℜ{(1+ z)/(1− z)}> 0, as shown in Example 1.1. �

Example 1.3. The function

w(z) =
1+ zn

1− zn , n = 1,2,3, . . .

9



belongs to P for |z| < 1. To see this, note that w(0) = 1. Further, w(z) = (m ◦ φ)(z)

where m is the Möbius function and φ(z) = zn. Since |φ(z)| < 1, it follows from Ex-

ample 1.2 that ℜ{w}> 0. �

In 1911, Herglotz [18] obtained an integral formula for functions in the class P.

Theorem 1.3. [18] Let p be an analytic function in D satisfying p(0) = 1. Then p ∈P

if and only if

p(z) =
∫ 2π

0

1+ ze−it

1− ze−it dµ(t),

where dµ(t)≥ 0 and
∫ 2π

0 dµ(t) = µ(2π)−µ(0) = 1.

The Herglotz formula gives the bounds for the coefficients of functions in P. This

result is due to Carathéodory.

Theorem 1.4. [5] If p ∈ P with p(z) = 1+∑
∞
n=1 pnzn, z ∈ D, then |pn| ≤ 2 for all

n ∈ N. These estimates are sharp.

Proof. Since p ∈ P, by Theorem 1.3, we have

p(z) =
∫ 2π

0

1+ ze−it

1− ze−it dµ(t),

where dµ(t)≥ 0 and
∫ 2π

0 dµ(t) = µ(2π)−µ(0) = 1. Therefore,

p(z) =
∫ 2π

0

1+ ze−it

1− ze−it dµ(t)

=
∫ 2π

0
(1+2ze−it +2z2e−2it +2z3e−3it + · · ·)dµ(t)

= 1+
∞

∑
n=1

(
2
∫ 2π

0
e−intdµ(t)

)
zn.

10



Now comparing this with p(z) = 1+∑
∞
n=1 pnzn yields

pn = 2
∫ 2π

0
e−intdµ(t).

Hence,

|pn|= 2

∣∣∣∣∣
∫ 2π

0
e−intdµ(t)

∣∣∣∣∣
≤ 2

∫ 2π

0
|e−int ||dµ(t)|

= 2
∫ 2π

0
dµ(t)

= 2.

The Möbius function in Example 1.2 showed that the bound |pn| ≤ 2 is sharp.

Closely related to the class P is the class of functions with positive real part of

order α,0≤ α < 1.

Definition 1.3. [15] An analytic function p with the normalization p(0) = 1 in D is

said to be a function of positive real part of order α , 0≤ α < 1 if ℜ {p(z)}> α. The

set of all functions of positive real part of order α is denoted by P(α). Observe that

for α = 0, we have P(0) = P.

Example 1.4. Consider the function f (z) = 1/(1− z), z ∈D. Since f is differentiable

for all z ∈ D, it is analytic in D. Clearly, f (0) = 1. Furthermore,

ℜ

{
1

1− z

}
= ℜ

{
1
2

(
1+ z
1− z

+1

)}
=

1
2

ℜ

{
1+ z
1− z

}
+

1
2
> 0+

1
2
=

1
2
.

Therefore, the function f (z) = 1/(1− z) belongs to P(1/2).

11



Figure 1.4: The real part of f (z) = 1/(1− z). �

Example 1.5. The function

f (z) =
1+(1−2α)z

1− z
= (1−α)

(
1+ z
1− z

)
+α = 1 + 2(1−α)

∞

∑
n=1

zn

is in the class P(α) for 0≤ α < 1. Clearly, f (0) = 1. Also,

ℜ

{
(1−α)

(
1+ z
1− z

)
+α

}
= (1−α)ℜ

{
1+ z
1− z

}
+α > α

using the fact that ℜ {(1+ z)/(1− z)}> 0 as in Example 1.1. For α = 0, we have the

inequality

ℜ{ f (z)}= ℜ

{
1+ z
1− z

}
> 0

which has been discussed in Example 1.1.

12



Figure 1.5: The real part of f (z) = (1+ z)/(1− z). �

Definition 1.4. A function ω which is analytic in D and satisfies the properties ω(0) =

0 and |ω(z)| < 1 is called a Schwarz function. The class of all Schwarz functions is

denoted by Ω.

Definition 1.5. For analytic functions f and g on D, we say that f is subordinate to g,

denoted f ≺ g, if there exists a Schwarz function ω in D such that

f (z) = g(ω(z)), z ∈ D.

Example 1.6. The function z2 is subordinate to z in D. Referring to Definition 1.5, we

can choose ω(z) = z2. Clearly, ω is analytic in D and ω(0) = 0. Also, |ω(z)|= |z2|=

|z|2 < 1 since z ∈ D. �

Example 1.7. The function z4 is subordinate to z2 in D. Referring to Definition 1.5, we

can choose ω(z) = z2. Clearly, ω is analytic in D and ω(0) = 0. Also, |ω(z)|= |z2|=

|z|2 < 1 since z ∈ D. In general, we have z2n ≺ z2 in D for n a positive integer. �
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Theorem 1.5. Let f and g be analytic in D. If g is univalent in D, then f ≺ g if and

only if f (D)⊂ g(D) and f (0) = g(0).

Proof. Suppose f ≺ g. By Definition 1.5, there exists a Schwarz function ω such that

f (z)= g(ω(z)). Since ω(D)⊂D, it follows that f (D)= g(ω(D))⊂ g(D). Also f (0)=

g(ω(0)) = g(0).

Conversely, suppose f (D) ⊂ g(D) and f (0) = g(0). Since g is univalent in D, it

follows that g maps D one-to-one onto its image g(D). Therefore, the inverse g−1 exists

in g(D) and maps g(D) onto D. Since g is analytic in D, the inverse g−1 is also analytic

in g(D). Since f (D)⊂ g(D), it follows that the function

ω(z) := g−1( f (z))

is analytic in D and |ω(z)| < 1. Thus, we obtain f (z) = g(ω(z)). From this, we have

g(ω(0)) = f (0) = g(0). Since g is univalent, this forces ω(0) = 0 by Definition 1.1.

So, ω is a Schwarz function such that f (z) = g(ω(z)) for z ∈D. Therefore, f ≺ g.

1.2.2 Subclasses Of Univalent Functions

In the course of tackling the Bieberbach conjecture, new classes of analytic and

univalent functions were defined and some nice properties of these classes were widely

investigated. Examples of such classes are the classes of starlike, convex and close-to-

convex functions.

A domain D ⊂ C is said to be starlike with respect to a point w0 in D if every line

14



joining the point w0 to every other point w inD lies entirely insideD. A domain which

is starlike with respect to the origin is simply called a starlike domain. Geometrically,

a starlike domain is a domain whose all points can be seen from the origin. A function

f ∈ A is called a starlike function if f (D) is a starlike domain. The subclass of S

consisting of all starlike functions is denoted by S∗.

Theorem 1.6. [10, Theorem 2.10] Let f ∈ A. Then f ∈ S∗ if and only if

ℜ

(
z f ′(z)
f (z)

)
> 0, z ∈ D.

Example 1.8. Recall from Example 1.1, the Koebe function k(z) = z/(1− z)2 is ana-

lytic and normalized in D. Moreover, k is in S∗ since

ℜ

{
zk′(z)
k(z)

}
= ℜ

{
z(1+ z)
(1− z)3

(1− z)2

z

}
= ℜ

{
1+ z
1− z

}
> 0. �

Example 1.9. The function

f (z) =
z

1− z2 =
∞

∑
n=0

z2n+1

is analytic in D since f is differentiable at all z ∈ D. Clearly, f (0) = 0. Since f ′(z) =

(1+ z2)/(1− z2)2, it follows that f ′(0) = 1. Also,

ℜ

{
z f ′(z)
f (z)

}
= ℜ

{
z(1+ z2)

(1− z2)2
(1− z2)

z

}
= ℜ

{
1+ z2

1− z2

}
> 0.

The last inequality follows from Example 1.3. Hence, the function f (z) = z/(1− z2)

is starlike on D.
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Figure 1.6: The image of D under the mapping f (z) = z/(1− z2). �

A domainD⊂C is said to be convex if every linear segment joining any two points

in D lies completely inside D. In other words, the domain D is convex if and only if

it is starlike with respect to every point in D. A function f ∈ A is said to be convex

if f (D) is a convex domain. The subclass of S consisting of all convex functions is

denoted by C.

Theorem 1.7. [10, Theorem 2.11] Let f ∈ A. Then f ∈ C if and only if

ℜ

(
1+

z f ′′(z)
f ′(z)

)
> 0, z ∈ D.

Example 1.10. The identity function f (z)= z is a convex function. Note that f ′′(z)= 1

and f ′′(z) = 0. Hence,

ℜ

{
1+

z f ′′(z)
f ′(z)

}
= 1 > 0. �

Example 1.11. The function

f (z) =
z

1− z
=

∞

∑
n=1

zn
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is analytic in D since f is differentiable in D. Clearly, f (0) = 0. Since f ′(z) = 1/(1−

z)2, it follows that f ′(0) = 1. Also, f ′′(z) = 2/(1− z)3. Hence,

ℜ

{
1+

z f ′′(z)
f ′(z)

}
= ℜ

{
1+

2z(1− z)2

(1− z)3

}
= ℜ

{
1+ z
1− z

}
> 0.

Therefore, the function z/(1− z) is convex in D.

Figure 1.7: The image of unit disk D under the mapping f (z) = z/(1− z). �

Example 1.12. The function

f (z) =− log(1− z) =
∞

∑
n=1

zn

n

is analytic in D since f is differentiable at every z∈D. Clearly, f (0) = 0. Since f ′(z) =

1/(1− z), it follows that f ′(0) = 1. Also, f ′′(z) = 1/(1− z)2. So,

ℜ

{
1+

z f ′′(z)
f ′(z)

}
= ℜ

{
1+

z(1− z)
(1− z)2

}
= ℜ

{
1

1− z

}
.

From Example 1.4, it has been shown that ℜ{1/(1−z)}> 1/2. It follows that ℜ{1/(1−

z)}> 0. Hence, the function f (z) =− log(1− z) is convex on D.
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Figure 1.8: The image of D under the mapping f (z) =− log(1− z). �

Example 1.13. The function

f (z) =
1
2

log
1+ z
1− z

=
∞

∑
n=0

z2n+1

2n+1

is analytic in D since f is differentiable at every z ∈ D. Clearly, f (0) = 0. Note that

f ′(z) = 1/(1− z2) and therefore f ′(0) = 1. Also, f ′′(z) = 2z/(1− z2)2. Hence,

ℜ

{
1+

z f ′′(z)
f ′(z)

}
= ℜ

{
1+

2z2(1− z2)

(1− z2)2

}
= ℜ

{
1+ z2

1− z2

}
> 0,

by Example 1.3. Therefore, f (z) = (1/2)[log(1+ z)/(1− z)] is convex in D.

Figure 1.9: The image of D under the mapping f (z) = (1/2)[log(1+ z)/(1− z)]. �
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Remark 1.1. Every convex function f in D is evidently starlike because the convex

domain f (D) is also a starlike domain (starlike with respect to the origin) since f

always maps origin to origin. The converse is not true in general as shown by the

Koebe function, k(z) = z/(1− z)2. We have seen in Example 1.8 that k is a starlike

function. Now, note that since k′(z) = (1+ z)/(1− z)3 and k′′(z) = 2(z+2)/(1− z)4,

it follows that

ℜ

{
1+

zk′′(z)
k′(z)

}
= ℜ

{
1+

2z(z+2)
(1− z)4

(1− z)3

(1+ z)

}
= ℜ

{
z2 +4z+1

1− z2

}
.

For z =−1/2 ∈ D, we have

ℜ

(
z2 +4z+1

1− z2

)
=−1 < 0.

Hence, Koebe function is not convex in D. Alternatively, we can also show the Koebe

function is not convex in geometric view. Recall that the Koebe function maps D maps

D one-to-one and onto the entire complex plane minus the part of the negative axis

from −1/4 to infinity. Consider the two points −1/4+ i and −1/4− i in the image

domain. Clearly, the line segment joining −1/4+ i and −1/4− i does not lie inside

the image domain. Therefore, the Koebe function is not convex in D.

The two preceding theorems, that is, Theorem 1.6 and Theorem 1.7, provide a

connection between starlikeness and convexity. This was first observed by Alexander

[2] in 1915.

Theorem 1.8. (Alexander’s Theorem) [2] A function f ∈A is convex in D if and only

if the function g defined by g(z) = z f ′(z) is starlike in D.
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Proof. If g(z) = z f ′(z), then

zg′(z)
g(z)

=
z(z f ′′(z)+ f ′(z))

z f ′(z)
= 1+

z f ′′(z)
f ′(z)

.

If the function f is convex, by Theorem 1.7, we have ℜ{1+ z f ′′(z)/ f ′(z)}> 0. Since

ℜ{zg′(z)/g(z)} = ℜ{1+ z f ′′(z)/ f ′(z)} > 0, the function g is starlike. The converse

follows similarly from above.

The Alexander’s Theorem (Theorem 1.8) can be rephrased in the form f ∈ S∗ if

and only if the function

g(z) =
∫ z

0

f (t)
t

dt

is convex in D.

Example 1.14. Consider the function f (z) = z/(1− z). Since f is convex by Example

1.11, the function

g(z) = z f ′(z) =
z[(1− z)− z(−1)]

(1− z)2 =
z

(1− z)2

is starlike in D. Notice that g is the Koebe function. �

The Bieberbach conjecture for the class S∗ of starlike functions holds true and it

was proved by Nevalinna [35] in 1921.

Theorem 1.9. [35, see also 15] If f (z) = z+∑
∞
n=2 anzn ∈ S∗, then |an| ≤ n for all n.

The inequality is sharp, as shown by the Koebe function, k(z) = z/(1− z)2.

Using Alexander’s Theorem (Theorem 1.8), the coefficient bound for class C of
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convex functions is easily deduced. This result was proved by Löewner [27] in 1917.

Theorem 1.10. [27, see also 15] If f (z) = z+∑
∞
n=2 anzn ∈ C, then |an| ≤ 1 for all n.

The inequality is sharp for all n.

Proof. Since f (z) = z+∑
∞
n=2 anzn is in C, by Theorem 1.8,

z f ′(z) = z+
∞

∑
n=2

nanzn

is in S∗. By Theorem 1.9, we have n|an| ≤ n. Hence, |an| ≤ 1. Since z/(1− z) =

z+ z2 + z3 + · · · , and it is convex by Example 1.11, the bound |an| ≤ 1 is sharp.

In 1936, Robertson [45] introduced the classes S∗(α) and C(α) of starlike and

convex functions of order α,0≤ α < 1, respectively, which are defined as

S∗(α) =

{
f ∈ A : ℜ

(
z f ′(z)
f (z)

)
> α

}

and

C(α) =

{
f ∈ A : ℜ

(
1+

z f ′′(z)
f ′(z)

)
> α

}
.

For α = 0, we have S∗(0) := S∗ and C(0) := C. As α increases, both classes S∗(α)

and C(α) become smaller. For 0≤ α < 1, the geometrical interpretation of the notion

of convexity of order α is that the ratio of the angle between two adjacent tangents

to the unit circle to the angle between the two corresponding tangents of the image of

the unit circle is less than 1/α and comes arbitrarily close to 1/α for some point of

the unit circle [45]. Unfortunately, the class S∗(α) do not admit any clear geometric

interpretation for 0≤ α < 1.
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Example 1.15. Consider the function kα(z) = z/(1− z)2(1−α), where 0≤ α < 1. The

function kα is analytic in D since it is differentiable at all z ∈ D. Clearly, kα(0) = 0.

Since k′α(z) = [1+(1−2α)z]/(1− z)3−2α , it follows that k′α(0) = 1. Note that

ℜ

{
zk′α(z)
kα(z)

}
= ℜ

{
z(1+(1−2α)z)

(1− z)3−2α

(1− z)2(1−α)

z

}
= ℜ

{
1+(1−2α)z

1− z

}
> α.

Hence, kα is in S∗(α). This function kα is called the Koebe function of order α, as

k0(z) = z/(1− z)2 = k(z), the Koebe function. �

For α = 1/2, we have the class of starlike functions of order 1/2, that is,

S∗(1/2) =

{
f ∈ S : ℜ

(
z f ′(z)
f (z)

)
>

1
2

}
.

Marx [30] and Strohhäcker [50] independently established the connection between the

classes C and S∗(1/2).

Theorem 1.11. [30, 50] If f ∈ C, then f ∈ S∗(1/2). This result is sharp, that is, the

constant 1/2 cannot be replaced by a larger constant.

Example 1.16. From Example 1.11, we know that the function f (z) = z/(1− z) is

convex. Hence, by Theorem 1.11, we can conclude that f (z) = z/(1−z) is also starlike

of order 1/2. Alternatively, we can show directly that ℜ{z f ′(z)/ f (z)}> 1/2. Note that

f ′(z) = 1/(1− z)2. Hence

ℜ

{
z f ′(z)
f (z)

}
= ℜ

{
z

(1− z)2
(1− z)

z

}
= ℜ

{
1

1− z

}
>

1
2
,

where the inequality follows from Example 1.4. �
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For f ∈ S∗(1/2), Schild [48] obtained the coefficient estimates as follows.

Theorem 1.12. [48] If f (z) = z+∑
∞
n=2 anzn ∈ S∗(1/2), then |an| ≤ 1. The inequality

is sharp, as shown by the function z/(1− z).

Another important subclass of univalent analytic functions is the class of close-to-

convex functions, which was introduced by Kaplan [19].

Definition 1.6. [19] A function f ∈A is said to be close-to-convex in D if there exists

a convex function g in D such that

ℜ

{
f ′(z)
g′(z)

}
> 0, z ∈ D. (1.1)

We denote by K the class of close-to-convex functions in D.

Every convex function is obviously close-to-convex in D. Indeed, if f is convex in

D, then by choosing g = f in (1.1), we have

ℜ

{
f ′(z)
g′(z)

}
= ℜ

{
f ′(z)
f ′(z)

}
= 1 > 0.

Equivalently, the condition (1.1) can be written in the form

ℜ

{
z f ′(z)
h(z)

}
> 0, z ∈ D (1.2)

where h(z) = zg′(z) is a starlike function on D by Alexander’s Theorem (Theorem

1.8). In other words, a function f ∈ A is said to be close-to-convex in D if there exists

a starlike function h such that the inequality (1.2) holds.
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Suppose f is a starlike function in D. If choose h = f in (1.2), we have

ℜ

{
z f ′(z)
h(z)

}
= ℜ

{
z f ′(z)
f (z)

}
> 0.

Hence, we can conclude that every starlike function is close-to-convex in D.

Therefore, we have the following inclusion

C ⊂ S∗ ⊂K.

From this, instant examples of close-to-convex functions are z/(1− z) and the

Koebe functions, k(z) = z/(1− z)2. Now, it is also natural to ask if close-to-convex

functions are univalent. Kaplan [19] showed that they are indeed so.

Theorem 1.13. [19] Every close-to-convex function is univalent.

Proof. Suppose f is close-to-convex in D. By Definition 1.6, there exists a convex

function g in D in such that ℜ{ f ′(z)/g′(z)} > 0. Since g is convex, it follows that

g maps D one-to-one and onto convex domain g(D). Therefore, g−1 exists in g(D).

Consider the function

h(w) = f (g−1(w)), w ∈ g(D). (1.3)

Since g is analytic D, it follows that g−1 is also analytic in g(D). Using the fact that

the composition of two analytic functions is analytic, the function h is analytic in D.
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Differentiating (1.3), we obtain

h′(w) =
f ′(g−1(w))
g′(g−1(w))

=
f ′(z)
g′(z)

, w ∈ g(D), z ∈ D,

and ℜ{h′(w)}=ℜ{ f ′(z)/g′(z)}> 0 in g(D). Now, by the Noshiro-Warschawski The-

oreom (Theorem 1.1), the function h is univalent in g(D). Therefore, equation (1.3)

becomes

f (z) = h(g(z)), z ∈ D.

Using the fact that the composition of two univalent functions is again univalent, the

function f is univalent in D.

With Theorem 1.13, we have the inclusion

C ⊂ S∗ ⊂K ⊂ S.

Remark 1.2. Recall that every starlike function in D is close-to-convex but the con-

verse is not necessarily true. We will show an example of a close-to-convex function

which is not starlike. Such a function is

f (z) = z+
1
2

z2 +
1
3

z3. (1.4)

To show that this f is close-to-convex, we need a lemma due to Ozaki [38].

Lemma 1.1. [38] If f (z) = z +∑n≥2 Anzn is analytic in D and if 1 ≥ 2A2 ≥ ·· · ≥

nAn ≥ ·· · ≥ 0 or 1≤ 2A2 ≤ ·· · ≤ nAn ≤ ·· · ≤ 2, then f is close-to-convex with respect

to − log(1− z).

25



Observe that the second coefficient A2 and third coefficient A3 of the function f in

(1.4) are 1/2 and 1/3, respectively. Also, f satisfies the hypothesis 1 ≥ 2A2 ≥ 3A3 ≥

·· · ≥ 0. Therefore, f is close-to-convex with respect to − log(1− z).

To show that f is not a starlike function, note that for z = eiθ , we have

ℜ

{
f (z)

z f ′(z)

}
= ℜ

{
1+(1/2)z+(1/3)z2

1+ z+ z2

}

= ℜ

{
1+(1/2)eiθ +(1/3)e2iθ

1+ eiθ + e2iθ

}

= ℜ

{
6e−iθ +3+2eiθ

6(e−iθ +1+ eiθ )

}

= ℜ

{
6cosθ −6isinθ +3+2cosθ +2isinθ

6(cosθ − isinθ +1+ cosθ + isinθ)
,

}

=
3+8cosθ

6(1+2cosθ)
,

which is negative for some values of θ , for example, when cosθ =−2/5. For a func-

tion p(z), which is nonzero, we have

ℜ

{
1

p(z)

}
= ℜ

{
p(z)
|p(z)|2

}
=

1
|p(z)|2

ℜ {p(z)}.

If ℜ {1/p(z)}< 0, then ℜ {p(z)}< 0. Since ℜ{ f (z)/z f ′(z)}< 0 for z= eiθ0, cos θ0 =

−2/5, it follows that ℜ{z f ′(z)/ f (z)}< 0 there. Thus, f is not starlike in D. Hence, a

close-to-convex function is not necessarily starlike.

Recall that the functions z,− log(1− z),(1/2) log[(1+ z)/(1− z)] and z/(1− z) are

convex functions in D (Examples 1.10 - 1.13). Hence, by choosing suitable convex

functions in (1.1), we obtain some sufficient conditions for a function to be close-to-
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convex.

Theorem 1.14. If f ∈ A satisfying any one of the following conditions

ℜ{ f ′(z)}> 0, (1.5)

ℜ{(1− z) f ′(z)}> 0, (1.6)

ℜ{(1− z2) f ′(z)}> 0, (1.7)

ℜ{(1− z)2 f ′(z)}> 0, (1.8)

in D, then f is in K.

Proof. To obtain (1.5) - (1.8), we choose in Definition 1.6 the convex function g re-

spectively to be z,− log(1− z), 1
2 log[(1+ z)/(1− z)] and z/(1− z).

Recall that every close-to-convex function is univalent in D, hence is locally univa-

lent. However, the converse may not be true. The following theorem gives a necessary

and sufficient condition for a locally univalent analytic function to be close-to-convex

in D.

Theorem 1.15. [19] (Kaplan’s Theorem) Let f be analytic and f ′(z) 6= 0 in D. Then f

is close-to-convex if and only if

∫
θ2

θ1

ℜ

[
1+

reiθ f ′′(reiθ )

f ′(reiθ )

]
dθ >−π,

for each r ∈ (0,1) and for each pair of real numbers θ1,θ2 such that 0≤ θ2−θ1 ≤ 2π.
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Geometrically, Kaplan’s theorem implies that the image of each circle |z|= r < 1 is

a simple closed curve with the property that as θ increases, either in the counterclock-

wise direction or clockwise direction, the angle of the tangent vector arg{(∂/∂θ) f (reiθ )}

does not decrease by more than −π in any interval [θ1,θ2]. In other words, the curve

cannot make a “hairpin bend” backward to intersect itself. (Refer Kaplan [19] page

177.)

The Bieberbach conjecture also holds for close-to-convex functions as was proved

by Reade [44] in 1955.

Theorem 1.16. [44] If f (z) = z+∑
∞
n=2 anzn is close-to-convex, then |an| ≤ n, for all

n. The inequality is sharp, as shown by the Koebe function, k(z) = z/(1− z).

Proof. Suppose f is close-to-convex. By Definition 1.6, there exists a convex func-

tion g such that ℜ{ f ′(z)/g′(z)} > 0. Let g(z) = z+∑
∞
n=2 bnzn. Since g is convex, by

Theorem 1.10, we know that |bn| ≤ 1 for all n. Since f ′(z)/g′(z) ∈ P, it follows from

Theorem 1.2 that the series representation of f ′(z)/g′(z) is given by

f ′(z)
g′(z)

= 1+
∞

∑
n=1

cnzn. (1.9)

By Theorem 1.4, we have |cn| ≤ 2. Since

f ′(z)
g′(z)

=
1+∑

∞
n=2 nanzn−1

1+∑
∞
n=2 nbnzn−1 ,
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we have

1+
∞

∑
n=2

nanzn−1 =

(
1+

∞

∑
n=2

nbnzn−1

)(
1+

∞

∑
n=1

cnzn

)

= 1+
∞

∑
n=2

nbnzn−1 +
∞

∑
n=1

cnzn +

(
∞

∑
n=2

nbnzn−1

)(
∞

∑
n=1

cnzn

)

= 1+
∞

∑
n=2

nbnzn−1 +
∞

∑
n=2

cn−1zn−1 +

(
∞

∑
n=2

nbnzn−1

)(
∞

∑
n=2

cn−1zn−1

)
.

Equating the coefficient of zn−1 on both sides, we get

nan = nbn +(n−1)bn−1c1 +(n−2)bn−2c2 + · · ·+2b2cn−2 + cn−1,

which yields

|nan| ≤ n|bn|+(n−1)|bn−1||c1|+(n−2)|bn−2||c2|+ · · ·+2|b2||cn−2|+ |cn−1|.

Since |bn| ≤ 1 and each |cn| ≤ 2 for any n ∈ N, we have

|nan| ≤ n+2(n−1)+2(n−2) · · ·+4+2

= n+2[(n−1)+(n−2)+ · · ·+2+1]

= n+2

[
n(n−1)

2

]

= n2,

which implies that |an| ≤ n for all n = 1,2,3, . . . .
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1.3 Scope Of Dissertation

Here is the summary of the dissertation. The dissertation is divided into four chap-

ters, followed by references at the end.

In the first chapter, which is the introductory chapter, we review and assemble some

of the general principles of theory of univalent functions which underlie the geometric

function theory of a complex variable.

Chapter 2 deals with sufficient conditions for analytic functions satisfying certain

third-order differential inequalities to be starlike in the unit disk D. As a consequence,

conditions for starlikeness of functions defined by integral operators are obtained. Con-

nections are also made to earlier known results. Some background on differential in-

equalities and operator theory are discussed.

Chapter 3 studies a new subclass of close-to-convex functions. Some interesting

results are obtained such as inclusion relationships, an estimate for the Fekete-Szegö

functional for functions belonging to the class, coefficient estimates, and a sufficient

condition. Connections are made with previously known results

In Chapter 4, a summary of the work done in this dissertation is presented.
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CHAPTER 2

STARLIKENESS OF AN INTEGRAL OPERATOR

2.1 Introduction

In real analysis, we all learn that if the first derivative of a function f is positive, that

is, f ′(x) > 0, then f is an increasing function. In complex analysis, if f is analytic in

a convex domain and the real part of its first derivative is positive, that is, ℜ{ f ′(z)}>

0, then f is univalent in the domain. This is the well-known Noshiro-Warschawski

Theorem discussed earlier in Theorem 1.1.

An important area of research in geometric function theory is to determine suffi-

cient conditions to ensure starlikeness of analytic functions in the unit disk D. These

include conditions in terms of differential inequalities. One of the famous differen-

tial inequalities is the Alexander differential g(z) = z f ′(z), which provides a connec-

tion between starlikeness and convexity of analytic functions, as discussed in Theorem

1.8. Moreover, many researchers also investigate the starlikeness of analytic functions

given by operators. The study of operators also plays a vital role in complex function

theory. In the literature, there are several well known operators such as the Alexander

integral operator, Libera integral operator and Bernardi integral operator.

Early in 1915, Alexander [2] introduced the operator A :A→A defined by

A[ f ](z) :=
∫ z

0

f (t)
t

dt.
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This operator is now known as the Alexander operator. This operator establishes a

connection between starlikeness and convexity of analytic functions.

Meanwhile, Libera [26] studied another operator L :A→A given by

g(z) = L[ f ](z) =
2
z

∫ z

0
f (t)dt, f ∈ A, (2.1)

which is knowns as the Libera operator. The Libera integral is also the solution of the

first-order linear differential equation: zg′(z)+ g(z) = 2 f (z). He also showed that the

operator preserved starlikeness, convexity and close-to-convexity.

Theorem 2.1. [26, Theorem 1 and Theorem 2] If f is in S∗, then the function defined

by (2.1) is likewise in S∗. This result is also holds true for f ∈ C.

Theorem 2.2. [26, Theorem 3] If f is close-to-convex with respect to g, then L[ f ] is

also close-to-convex with respect to L[g] where L[ f ] is defined in (2.1) and

L[g](z) =
2
z

∫ z

0
g(t)dt.

In 1969, Bernardi [3] introduced an operator Lγ :A→A defined by

h(z) = Lγ [ f ](z) =
1+ γ

zγ

∫ z

0
f (t)tγ−1 dt, γ = 0,1,2,3, . . . . (2.2)

This operator is known as the Bernardi operator. For γ = 0, we have

L0[ f ](z) :=
∫ z

0

f (t)
t

dt = A[ f ](z)
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which is the Alexander operator. For γ = 1, it can be easily seen that

L1[ f ](z) :=
2
z

∫ z

0
f (t)dt = L[ f ](z).

Hence, the Bernardi operator is a generalization of the Libera operator. The Bernardi

integral is the solution of the differential equation: zh′(z)+ γh(z) = (1+ γ) f (z).

Pascu [40] and Lewandowski et al.[25] independently showed that the Bernardi

operator also preserves starlikeness, convexity and close-to-convexity, even when γ is

a complex number.

Theorem 2.3. [25, 40] Let Lγ be defined in (2.2) and ℜ{γ} ≥ 0. Then

(i) Lγ [S∗] = {Lγ [ f ](z) | f ∈ S∗} ⊂ S∗,

(ii) Lγ [C] = {Lγ [ f ](z) | f ∈ C} ⊂ C,

(iii) Lγ [K] = {Lγ [ f ](z) | f ∈ K} ⊂ K.

On the other hand, Miller et al. [32] gave the definition of a starlike operator. An

operator defined on S∗, that maps S∗ into (or onto) S∗, is called a starlike operator.

Hence, the Alexander, Libera and Bernardi operators are examples of starlike opera-

tors.

2.2 Motivation

Recall that

An =

{
f ∈H : f (z) = z+

∞

∑
k=n+1

akzk

}
,
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where H denote the class of all analytic functions in D and A1 := A. For f ∈ An,

Mocanu [33] considered the problem of finding the maximum value of λ for which

| f ′′(z)| ≤ λ implies f is starlike in D and proved the following result.

Theorem 2.4. [33, Theorem 2] If f ∈ An and

| f ′′(z)| ≤ n(n+1)
2n+1

,

then f ∈ S∗.

In 1993, Mocanu [34] improved the bound of Theorem 2.4 as follows.

Theorem 2.5. [34, Theorem ] If f ∈ An and

| f ′′(z)| ≤ n(n+1)√
(n+1)2 +1

,

then f ∈ S∗.

Remark 2.1. Putting n= 1 in Theorem 2.5, whatever f ∈A :=A1 and | f ′′(z)| ≤ 2/
√

5,

then f ∈ S∗.

Finally, Obradović [37] closed this problem with the constant λ = 1 by proving

that this result is sharp for f ∈ A.

Theorem 2.6. [37, Theorem 1] If f ∈ A and | f ′′(z)| ≤ 1, z ∈ D, then f ∈ S∗. The

result is sharp.

In 2003, Fournier and Mocanu [12] studied some second order differential inequal-

ities which imply starlikeness.
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Theorem 2.7. [12, Theorem 2] Let f ∈ A and 0≤ α < 1. If

|z f ′′(z)−α( f ′(z)−1)| ≤ 1−α,

then f ∈ S∗.

Later, Miller and Mocanu [31] generalized Theorem 2.7 by considering f ∈ An.

Theorem 2.8. [31, Lemma 2.1] Let f ∈ An and 0≤ α < n. If

|z f ′′(z)−α( f ′(z)−1)|< n−α,

then f ∈ S∗.

Besides, they also obtained another second-order differential inequality that pro-

vides a condition for starlikeness.

Theorem 2.9. [31, Lemma 2.2] Let f ∈ An and 0≤ α < n+1. If

∣∣∣∣∣z f ′′(z)−α

(
f ′(z)− f (z)

z

)∣∣∣∣∣< n(n+1−α)

n+1
,

then f ∈ S∗.

Later, Kuroki and Owa [24] extended Theorem 2.8 to obtain a condition for star-

likeness of order β .

Theorem 2.10. [24, Theorem 2.1] Let f ∈ An,0≤ α < n and 0≤ β < 1. If

|z f ′′(z)−α( f ′(z)−1)|< (n+1)(1−β )(n−α)

n+1−β
,
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then f ∈ S∗(β ).

The extension of Theorem 2.9 for f ∈ An to be starlike of order β was done by

Verma et al.[52].

Theorem 2.11. [52, Theorem 3.1] Let f ∈ An and α and β be real numbers such that

0≤ α < n+1 and 0≤ β < 1. If

∣∣∣∣∣z f ′′(z)−α

(
f ′(z)− f (z)

z

)∣∣∣∣∣< n(n+1−α)(1−β )

(n+1−β )
,

then f ∈ S∗(β ).

Furthermore, Aghalary and Joshi [1] extended Theorem 2.10 by considering α to

be a complex number.

Theorem 2.12. [1, Theorem 2.3] Let f ∈ An,0 ≤ β < 1 and max{0, |α|+β − 1} ≤

ℜ{α}< n where α ∈ C. If f satisfies

|z f ′′(z)−α( f ′(z)−1)|< (n−ℜα)(n+1)[1+ℜα−|α|−β ]

n+1−β
,

then f ∈ S∗(β ).

Recently, Chandrashekar et al.[6] obtained sufficient condition on certain third-

order differential inequality that would imply starlikeness of an analytic function. The

results obtained extend the result of Kuroki and Owa [24] (Theorem 2.10).

Theorem 2.13. [6, Theorem 6] Let f ∈An,0<α < nν ,δ >α ≥ γ ≥ 0, and 0≤ β < 1.
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Further let µ and ν satisfy

ν−αµ = δ − γ and νµ = γ.

If

|γz2 f ′′′(z)+δ z f ′′(z)−α( f ′(z)−1)|< (1+nµ)(n+1)(1−β )(nν−α)

n+1−β
,

then f ∈ S∗(β ).

Recall that the Alexander operator is defined by

A[ f ](z) :=
∫ z

0

f (t)
t

dt,

where A :A→A. It can seen that

∫ z

0

f (t)
t

dt =
∫ 1

0

f (rz)
r

dr,

by setting t = rz. For single operators of the form

f (z) =
∫ 1

0
W (r,z)dr,

Miller et al.[32] have determined conditions on the kernel W to ensure f to be a starlike

function by using the theory of differential subordination. Aghalary and Joshi [1],

Fournier and Mocanu [12], Kuroki and Owa [24], Miller and Mocanu [31] and Verma

et al.[51] determined conditions for starlikeness of functions defined by double integral
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operator

f (z) =
∫ 1

0

∫ 1

0
W (r,s,z)dr ds.

More recently, Chandrashekar et al.[6] obtanied conditions for starlikeness of func-

tions defined by triple integral operators

f (z) =
∫ 1

0

∫ 1

0

∫ 1

0
W (r,s, t,z)dr dsdt.

Using Theorem 2.8, Miller and Mocanu [31] obtained result concerning the double

integral starlike operator.

Theorem 2.14. [31, Theorem 2.1] Let 0≤ α < n and g ∈H. If |g(z)| ≤ n−α, then

f (z) = z+ zn+1
∫ 1

0

∫ 1

0
g(rsz)rn−α−1sn dr ds

is a starlike function.

Using Theorem 2.13, Chandrashekar et al.[6] constructed a starlike function of

order β expressed in terms of a triple integral.

Theorem 2.15. [6, Theorem 7] Let 0<α < nµ, δ >α ≥ γ > 0, 0≤ β < 1, and g∈H.

If

|g(z)|< (1+nµ)(n+1)(1−β )(nν−α)

n+1−β

where

ν−αµ = δ − γ,νµ = γ,
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then

f (z) = z+
zn+1

γ

∫ 1

0

∫ 1

0

∫ 1

0
g(rstz)rn−1−α/νsntn−1+1/µdrdsdt

satisfies f ∈ S∗(β ).

Motivated by aforementioned works, the aim of the present work is to obtain an-

other third order differential inequality which gives a sufficient condition for functions

in An to be starlike functions of order β . Using this third-order differential inequality,

we construct new starlike function of order β which can be expressed in terms of triple

integral of some function in the classH.

To prove the main results, the following lemmas will be used.

Lemma 2.1. [17] Let h be convex in D with h(0) = a and ℜ{γ} ≥ 0. If p(z) ∈H[a,n]

and

p(z)+
zp′(z)

γ
≺ h(z),

then

p(z)≺ q(z)≺ h(z),

where

q(z) =
γ

nzγ/n

∫ z

0
h(t) t(γ/n)−1 dt.

The function q is convex. This result is sharp, that is, the function q is the best (a,n)−

dominant.

Lemma 2.2. [51] Suppose µ,ν are real numbers and satisfy

µ +ν = α− γ and µν = γ
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such that µ > 0 and ν > 2/(1−β ) where 0≤ β < 1. If f ∈ An satisfies

∣∣∣(1−α +2γ)
f (z)

z
+(α−2γ) f ′(z)+ γz f ′′(z)−1

∣∣∣< (1+nµ)(1+nν)(ν(1−β )−2)
ν(n+1−β )

for z ∈ D, then f ∈ S∗(β ).

Lemma 2.3. [51] Suppose g ∈H satisfies

|g(z)| ≤ (1+nµ)(1+nν)(v(1−β )−2)
ν(n+1−β )

for some µ > 0,ν > 2/(1−β ) and 0≤ β < 1. Then the function f given by

f (z) = z+
zn+1

µν

∫ 1

0

∫ 1

0
g(rsz)rn+1/µ−1sn+1/ν−1drds

is starlike of order β in D.

2.3 Main results

Theorem 2.16. Let f ∈An, δ ≥ 0,µ > 0, ν > 2/(1−β ) and 0≤ β < 1. Further let µ

and ν satisfy

µ +ν = α− γ and µν = γ.

If

∣∣∣∣∣δγz2 f ′′′(z)+ [γ +δ (α− γ)]z f ′′(z)+ [δ (1−α +2γ)+(α−2γ)] f ′(z)+

(1−α +2γ)(1−δ )
f (z)

z
−1

∣∣∣∣∣
<

(1+nδ )(1+nµ)(1+nν)[ν(1−β )−2]
ν(n+1−β )

, (2.3)
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then f ∈ S∗(β ).

Remark 2.2. Putting δ = 0 in Theorem 2.16, then f ∈ S∗(β ) if

∣∣∣(1−α +2γ)
f (z)

z
+(α−2γ) f ′(z)+ γz f ′′(z)−1

∣∣∣< (1+nµ)(1+nν)(ν(1−β )−2)
ν(n+1−β )

.

This result was obtained earlier by Verma et al.[51, Theorem 3.1].

Proof. The differential inequality (2.3) can be written as follows:

δγz2 f ′′′(z)+ [γ +δ (α− γ)]z f ′′(z)+ [δ (1−α +2γ)+(α−2γ)] f ′(z)+

(1−α +2γ)(1−δ )
f (z)

z

≺ 1+
(1+nδ )(1+nµ)(1+nν)[ν(1−β )−2]

ν(n+1−β )
z. (2.4)

Let

p(z) = (1−α +2γ)
f (z)

z
+(α−2γ) f ′(z)+ γz f ′′(z)−1.

Then,

p(z)+δ zp′(z) = (1−α +2γ)
f (z)

z
+(α−2γ) f ′(z)+ γz f ′′(z)−1

+δ z
(
(1−α +2γ)

z f ′(z)− f (z)
z2 +(α−2γ) f ′′(z)+ γ(z f ′′′(z)+ f ′′(z))

)
= (1−α +2γ)

f (z)
z

+(α−2γ) f ′(z)+ γz f ′′(z)−1+δ (1−α +2γ) f ′(z)

−δ (1−α +2γ)
f (z)

z
+δ (α−2γ)z f ′′(z)+δγz2 f ′′′(z)+δγz f ′′(z)

= δγz2 f ′′′(z)+
(
γ +δ (α− γ)

)
z f ′′(z)+

(
δ (1−α +2γ)+(α−2γ)

)
f ′(z)

+(1−α +2γ)(1−δ )
f (z)

z
−1.
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Hence, (2.4) can be written as

p(z)+δ zp′(z)≺ (1+nδ )(1+nµ)(1+nν)(ν(1−β )−2)
ν(n+1−β )

z = h(z).

Since the function h satisfying the inequality

ℜ

{
1+

zh′′(z)
h′(z)

}
= 1 > 0,

it follows that the function h is convex. Also, h(0) = p(0) = 0. It follows from Lemma

2.1 with γ = 1/δ that

p(z)≺ 1
δnz1/δn

∫ z

0

(1+nδ )(1+nµ)(1+nν)(ν(1−β )−2)
ν(n+1−β )

t · t1/δn−1dt

≺ 1
δnz1/δn

(1+nδ )(1+nµ)(1+nν)(ν(1−β )−2)
ν(n+1−β )

∫ z

0
t1/δndt

≺ (1+nµ)(1+nν)(ν(1−β )−2)
ν(n+1−β )

z,

which gives

(1−α +2γ)
f (z)

z
+(α−2γ) f ′(z)+ γz f ′′(z)−1≺ (1+nµ)(1+nν)(ν(1−β )−2)

ν(n+1−β )
z.

Hence, we have

(1−α+2γ)
f (z)

z
+(α−2γ) f ′(z)+γz f ′′(z)−1=

(1+nµ)(1+nν)(ν(1−β )−2)
ν(n+1−β )

ω(z).

where ω(z) is a Schwarz function as defined in Definition 1.4. Taking modulus on both
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sides, we obtain

∣∣∣∣∣(1−α +2γ)
f (z)

z
+(α−2γ) f ′(z)+ γz f ′′(z)−1

∣∣∣∣∣=
∣∣∣∣∣(1+nµ)(1+nν)(ν(1−β )−2)

ν(n+1−β )

∣∣∣∣∣|ω(z)|

<
(1+nµ)(1+nν)(ν(1−β )−2)

ν(n+1−β ).

Hence, by Lemma 2.2, f ∈ S∗(β ).

Using Theorem 2.16, the conditions on the starlikeness of a triple integral is ob-

tained.

Theorem 2.17. Let g ∈H, δ > 0,µ > 0, ν > 2/(1−β ) and 0≤ β < 1. If

|g(z)|< (1+nδ )(1+nµ)(1+nν)(v(1−β )−2)
ν(n+1−β )

, (2.5)

where

µ +ν = α− γ and µν = γ

then

f (z) = z+
zn+1

δγ

∫ 1

0

∫ 1

0

∫ 1

0
g(rstz)rn+(1/µ)−1sn+(1/ν)−1tn+(1/δ )−1 dr dsdt

is in the class S∗(β ).

Proof. Consider

f (z) = z+
zn+1

δγ

∫ 1

0

∫ 1

0

∫ 1

0
g(rstz)rn+(1/µ)−1sn+(1/ν)−1tn+(1/δ )−1 dr dsdt. (2.6)
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The function f is analytic in D and has the form f (z)= z+∑
∞
k=n+1 akzk. Hence, f ∈An.

Setting φ(rsz) = 1
δ

∫ 1
0 g(rstz)tn+(1/δ )−1 dt, equation (2.6) becomes

f (z) = z+
zn+1

γ

∫ 1

0

∫ 1

0
φ(rsz)rn+(1/µ)−1sn+(1/ν)−1 dr ds

= z+
zn+1

µν

∫ 1

0

(∫ 1

0
φ(rsz)rn+(1/µ)−1 dr

)
sn+(1/ν)−1 ds. (2.7)

Let ζ = sz. Then equation (2.7) becomes

f (z) = z+
zn+1

µν

∫ z

0

(∫ 1

0
φ(rζ )rn+(1/µ)−1 dr

)
(ζ z−1)n+(1/ν)−1 z−1dζ

= z+
z1−1/ν

µν

∫ z

0

(∫ 1

0
φ(rζ )rn+(1/µ)−1 dr

)
ζ

n+(1/ν)−1 dζ

f (z)
z

= 1+
1

µνz1/ν

∫ z

0

(∫ 1

0
φ(rζ )rn+(1/µ)−1 dr

)
ζ

n+(1/ν)−1 dζ .

By setting ϕ(z) = f (z)
z , we can get

z1/ν
ϕ(z) = z1/ν +

1
µν

∫ z

0

(∫ 1

0
φ(rζ )rn+(1/µ)−1 dr

)
ζ

n+(1/ν)−1 dζ .

Differentiating both sides, we have

z1/ν
ϕ
′(z)+

z(1/ν)−1ϕ(z)
ν

=
z(1/ν)−1

ν
+

zn+(1/ν)−1

µν

∫ 1

0
φ(rz)rn+(1/µ)−1dr

or

νzϕ
′(z)+ϕ(z) = 1+

zn

µ

∫ 1

0
φ(rz)rn+(1/µ)−1dr.
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Since ϕ ′(z) = ( f ′(z)− f (z))/z, it follows that

(1−ν)
f (z)

z
+ν f ′(z) = 1+

zn

µ

∫ 1

0
φ(rz)rn+(1/µ)−1dr.

Note that if we let η = rz, then

1+
zn

µ

∫ 1

0
φ(rz)rn+(1/µ)−1dr = 1+

1
µ z1/µ

∫ z

0
φ(η)ηn+(1/µ)−1 dη .

So,

(1−ν)
f (z)

z
+ν f ′(z) = 1+

1
µ z1/µ

∫ z

0
φ(η)ηn+(1/µ)−1 dη .

Now, set ψ(z) = (1−ν) f (z)/z+ν f ′(z). Then

ψ(z) = 1+
1

µ z1/µ

∫ z

0
φ(η)ηn+(1/µ)−1 dη

z1/µ
ψ(z) = z1/µ +

1
µ

∫ z

0
φ(η)ηn+(1/µ)−1 dη .

Similarly, now differentiate both sides to get

z1/µ
ψ
′(z)+

z(1/µ)−1ψ(z)
µ

=
z(1/µ)−1

µ
+

zn+(1/µ)−1φ(z)
µ

or

µzψ
′(z)+ψ(z)−1 = zn

φ(z). (2.8)

Since µzψ ′(z)+ψ(z)−1=(1−α+2γ) f (z)/z+(α−2γ) f ′(z)+γz f ′′(z)−1, equation

(2.8) is becomes

(1−α +2γ)
f (z)

z
+(α−2γ) f ′(z)+ γz f ′′(z)−1 = zn

φ(z). (2.9)
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Now, let p(z) = (1−α + 2γ) f (z)/z+(α − 2γ) f ′(z)+ γz f ′′(z)− 1 and since φ(z) =

1
δ

∫ 1
0 g(tz)tn+(1/δ )−1dt, equation (2.9) becomes

p(z) =
zn

δ

∫ 1

0
g(tz)tn+(1/δ )−1dt.

Note that if we take u = tz, then

zn

δ

∫ 1

0
g(tz)tn+(1/δ )−1dt =

1
δ z1/δ

∫ z

0
g(u)un+(1/δ )−1 du.

It follows that

p(z) =
1

δ z1/δ

∫ z

0
g(u)un+(1/δ )−1 du.

Differentiating both sides, we obtain

p(z)+δ zp′(z) = zng(z). (2.10)

Substituting back p(z) = (1−α +2γ) f (z)/z+(α−2γ) f ′(z)+ γz f ′′(z)−1 into equa-

tion (2.10) yields

δγz2 f ′′′(z)+ [γ +δ (α− γ)]z f ′′(z)+ [(δ (1−α +2γ)+(α−2γ)] f ′(z)

+(1−α +2γ)(1−δ )
f (z)

z
−1 = zng(z).
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Taking modulus both sides and using (2.5), we have

∣∣∣∣∣δγz2 f ′′′(z)+ [γ +δ (α− γ)]z f ′′(z)+ [(δ (1−α +2γ)+(α−2γ)
)

f ′(z)+

(1−α +2γ)(1−δ )
f (z)

z
−1

∣∣∣∣∣
= |z|n|g(z)|

<
(1+nδ )(1+nµ)(1+nν)(v(1−β )−2)

ν(n+1−β )
.

It follows from Theorem 2.16 that the function f lies in S∗(β ).
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CHAPTER 3

SUBCLASSES OF CLOSE-TO-CONVEX FUNCTIONS

3.1 Introduction

Recall from Definition 1.6 that an analytic function f is said to be close-to-convex

in the unit disk D if there exists a convex function g such that

ℜ

{
f ′(z)
g′(z)

}
> 0, z ∈ D.

In this chapter, a new subclass of close-to-convex functions is introduced and proper-

ties of this class of functions are discussed. This new class of functions is motivated

from the work of Sakaguchi [47].

3.2 Motivation

In 1959, Sakaguchi [47] introduced and investigated the class of function starlike

with respect to symmetric points in the unit disk D. Let the class of these functions be

denoted by S∗s .

Definition 3.1. [47] A function f ∈ A is said to be starlike with respect to symmetric

points in D if for every 0 ≤ r < 1 sufficiently close to 1, and every z0 on the circle

|z|= r, the angular velocity of f (z) about f (−z0) is positive at z = z0 as z traverses the

circle |z|= r in the positive direction.
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Geometrically, the angular velocity of f (z) about f (−z0) is given by

d
dt

arg( f (z)− f (−z0) =
d
dt

Im [ln( f (z)− f (−z0))], t ∈ [a,b]

= Im

[
d
dt

ln( f (z)− f (−z0))

]

= Im

[
d
dz

ln( f (z)− f (−z0))
dz
dt

]

= Im

[
f ′(z)

f (z)− f (−z0)

dz
dt

]
.

On the circle z = reit ,0≤ t ≤ 2π, we have z′(t) = ireit = iz. Hence,

Im

[
f ′(z)

f (z)− f (−z0)

dz
dt

]
= Im

[
i

z f ′(z)
f (z)− f (−z0)

]
= ℜ

[
z f ′(z)

f (z)− f (−z0)

]
.

By Definition 3.1, at the point z = z0, the angular velocity of f (z) about f (−z0) is

positive, that is,

ℜ

[
z0 f ′(z0)

f (z0)− f (−z0)

]
> 0.

Since z0 is arbitrary, we have

ℜ

[
z f ′(z)

f (z)− f (−z)

]
> 0.

Theorem 3.1. [47] Let f ∈ A. Then f ∈ S∗s if and only if

ℜ

{
z f ′(z)

f (z)− f (−z)

}
> 0, z ∈ D. (3.1)

One of the example of f ∈ S∗s is the odd starlike functions. Suppose f ∈ A is an

odd starlike function. Then f (−z) = − f (z) and ℜ{z f ′(z)/ f (z)} > 0 for all z ∈ D.
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Also,

ℜ

{
z f ′(z)
f (z)

}
= 2ℜ

{
z f ′(z)
2 f (z)

}
= 2ℜ

{
z f ′(z)

f (z)+ f (z)

}
= 2ℜ

{
z f ′(z)

f (z)− f (−z)

}
> 0.

Hence, the class of odd functions starlike with respect to origin is also in the class S∗s .

It is interesting to see that f ∈ S∗s is also close-to-convex in D because the function

( f (z)− f (−z))/2 is starlike in D. The constant 1/2 is for normalization purpose.

Theorem 3.2. [8] If f ∈ S∗s , then

F(z) =
f (z)− f (−z)

2
∈ S∗, z ∈ D.

Proof. We need to prove ℜ{zF ′(z)/F(z)}> 0 for z ∈ D. Note that

F ′(z) =
f ′(z)+ f ′(−z)

2
,

and so

ℜ

{
zF ′(z)
F(z)

}
= ℜ

{
z( f ′(z)+ f ′(−z))

2
2

f (z)− f (−z)

}

= ℜ

{
z f ′(z)

f (z)− f (−z)

}
+ℜ

{
z f ′(−z)

f (z)− f (−z)

}
.

Since f ∈ S∗s , by Theorem 3.1, we have

ℜ

{
z f ′(z)

f (z)− f (−z)

}
> 0.
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On the other hand,

ℜ

{
z f ′(−z)

f (z)− f (−z)

}
= ℜ

{
−(−z) f ′(−z)
f (z)− f (−z)

}
= ℜ

{
(−z) f ′(−z)
f (−z)− f (z)

}
.

Let u = −z. Since z ∈ D, it follows that u = −z is also in D. Using Theorem 3.1, we

obtain

ℜ

{
(−z) f ′(−z)
f (−z)− f (z)

}
= ℜ

{
u f ′(u)

f (u)− f (−u)

}
> 0.

Since u is an arbitrary point in D, it follows that

ℜ

{
z f ′(−z)

f (z)− f (−z)

}
> 0.

Hence, ℜ{zF ′(z)/F(z)}> 0.

Motivated by Sakaguchi’s class of starlike functions with respect to symmetric

points, Gao and Zhou [13] discussed the class Ks of close-to-convex functions.

Definition 3.2. [13] A function f ∈ A belongs to Ks if there exists a function g ∈

S∗(1/2) such that

ℜ

{
−z2 f ′(z)

g(z)g(−z)

}
> 0, z ∈ D. (3.2)

The idea used by Gao and Zhou is to replace the function f (z)− f (−z) in the

denominator of (3.1) by the−g(z)g(−z), and the factor z is included for normalization,

so that−z2 f ′(z)/(g(z)g(−z)) takes the value 1 at z = 0. To ensure the univalency of f ,

it is further assumed that g is starlike of order 1/2 so that the function −g(z)g(−z)/z

is starlike (to be shown below), which implies the close-to-convexity of f .
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Theorem 3.3. [13] Let g∈S∗(1/2). Then−g(z)g(−z)/z∈S∗. Moreover, the function

−g(z)g(−z)/z is an odd starlike function.

Proof. Set φ(z)=−g(z) and ψ(z)= g(−z). Since g∈S∗(1/2), it follows that ℜ{zg′(z)/g(z)}>

1/2. Thus, we have

ℜ

{
zφ ′(z)
φ(z)

}
= ℜ

{
−zg′(z)
−g(z)

}
= ℜ

{
zg′(z)
g(z)

}
>

1
2
.

Also

ℜ

{
zψ ′(z)
ψ(z)

}
= ℜ

{
(−z)g′(−z)

g(−z)

}
>

1
2

because z ∈D implies−z is also in D. Let F(z) = φ(z)ψ(z)/z =−g(z)g(−z)/z. Then,

we have

zF ′(z)
F(z)

=
zφ ′(z)
φ(z)

+
zψ ′(z)
ψ(z)

−1

and so

ℜ

{
zF ′(z)
F(z)

}
= ℜ

{
zφ ′(z)
φ(z)

}
+ℜ

{
zψ ′(z)
ψ(z)

}
−1 >

1
2
+

1
2
−1 = 0.

Since

F(−z) =
−g(−z)g(z)
−z

=−

(
−g(z)g(−z)

z

)
=−F(z)

for all z ∈ D, it follows that −g(z)g(−z)/z is an odd function.

For this class Ks, Gao and Zhou [13] obtained several results such as inclusion

relationships, sharp coefficient bounds, distortion theorem and radius of convexity.

Later, Kowalczyk and Leś-Bomba [23] extended Definition 3.2 as follows.
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Definition 3.3. [23] A function f ∈ A belongs to Ks(α),0 ≤ α < 1, if there exists a

function g ∈ S∗(1/2) such that

ℜ

{
−z2 f ′(z)

g(z)g(−z)

}
> α, z ∈ D.

They also showed that the classKs(α),0≤ α < 1 is associated with an appropriate

subordination.

Theorem 3.4. [23] A function f ∈ A belongs to the class Ks(α),0 ≤ α < 1, if and

only if there exists a function g ∈ S∗(1/2) such that

−z2 f ′(z)
g(z)g(−z)

≺ 1+(1−2α)z
1− z

, z ∈ D.

Motivated by Kowalczyk and Leś-Bomba [23] works, Şeker [49] introduced a new

class K(k)
s (α), where 0≤ α < 1 and k ≥ 1.

Definition 3.4. [49] A function f ∈ A belongs to K(k)
s (α), if there exists a function

g(z) = z+∑
∞
n=2 bnzn ∈ S∗((k−1)/k) such that

ℜ

{
zk f ′(z)
gk(z)

}
> α, z ∈ D,

where 0≤ α < 1, k ≥ 1 is a fixed positive integer and gk(z) is given by

gk(z) =
k−1

∏
v=0

ε
−vg(εvz), (3.3)

with ε = e2πi/k.
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Let Gk(z) = gk(z)/zk−1. Then, we have

Gk(z) =
gk(z)
zk−1 =

∏
k−1
v=0 ε−vg(εvz)

zk−1

=
∏

k−1
v=0 ε−v[εvz+∑

∞
n=2 bn(ε

vz)n]

zk−1

=
∏

k−1
v=0[z+∑

∞
n=2 bnε(n−1)vzn]

zk−1

= z+
∞

∑
n=2

Bnzn.

The function Gk is normalized in D because Gk(0) = 0 and G′k(0) = 1.

For k = 1, we have

g1(z) =
0

∏
v=0

ε
0g(ε0z) = g(z).

For k = 2, we have ε = e2πi/2 = eπi = cosπ + isinπ =−1 and

g2(z) =
1

∏
v=0

ε
−vg(εvz) = [g1(z)][ε−1g(εz)] =−g1(z)g(−z) =−g(z)g(−z).

Therefore, we haveK(2)
s (α) =Ks(α), the class studied by Kowalczyk and Leś-Bomba

[23]. Furthermore, for α = 0, we have K(2)
s (0) = Ks, the class defined by Gao in the

paper [13].

Şeker [49] also showed that the class K(k)
s (α) is associated with an appropriate

subordination.

Theorem 3.5. [49] A function f (z) ∈ K(k)
s (α) if and only if there exists g ∈ S∗(k−1

k )

such that

zk f ′(z)
gk(z)

≺ 1+(1−2α)z
1− z

, z ∈ D.
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Instead of requiring the quantity −z2 f ′(z)/(g(z)g(−z)) subordinate to a particular

positive real part function, Wang et al.[54] introduced a general class Ks(ϕ), where ϕ

is any positive real part function in D.

Definition 3.5. [54] For a normalized function ϕ with positive real part, the class

Ks(ϕ) consists of function f ∈ A satisfying

−z2 f ′(z)
g(z)g(−z)

≺ ϕ(z)

for some function g ∈ S∗(1/2).

They proved the sharp distortion and growth distortion theorems and sufficient con-

ditions in terms of the coefficient in the class Ks(ϕ). Later, Cho et al.[7] obtained a

sharp estimate for the Fekete-Szegö functional, corresponding problem for the inverse

function and distortion and growth theorem for functions belonging to the classKs(ϕ).

Using a second order differential inequality, Wang and Chen [53] defined another

new subclass of close-to-convex functions.

Definition 3.6. [53] A function f ∈ A is in the class Ks(λ ,A,B) if it satisfies

−z2 f ′(z)+λ z3 f ′′(z)
g(z)g(−z)

≺ 1+Az
1+Bz

z ∈ D,

where 0≤ λ ≤ 1,−1≤ B < A≤ 1 and g ∈ S∗(1/2).

For the classKs(λ ,A,B), several results such as inclusion relationships, coefficient

estimates, covering theorem and distortion theorem are derived.
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Recently, using third order differential inequality, Goyal and Singh [16] introduced

and studied the following subclass of analytic functions.

Definition 3.7. [16] For a normalized analytic function ϕ with positive real part, a

function f ∈ A is in the class Ks(λ ,µ,ϕ) if it satisfies

z2 f ′(z)+(λ −µ +2λ µ)z3 f ′′(z)+λ µz4 f ′′′(z)
−g(z)g(−z)

≺ ϕ(z), z ∈ D

where 0≤ µ ≤ λ ≤ 1 and g ∈ S∗(1/2).

For the class Ks(λ ,µ,ϕ), the results of coefficient estimates and Fekete-Szegö

inequality are obtained. Obviously for µ = 0 and ϕ(z) = (1+Az)/(1+Bz) where

−1≤B<A≤ 1, we get the classKs(λ ,A,B) :=Ks(λ ,0,(1+Az)/(1+Bz)) which was

studied by Wang and Chen [53]. For λ = µ = 0, we get the class Ks(ϕ) :=Ks(0,0,ϕ)

which was studied by Cho et al.[7].

3.3 Main results

Motivated by aforementioned works, we now introduce the following subclass of

analytic functions.

Definition 3.8. Let ϕ be an analytic normalized function with positive real part, g ∈

S∗((k− 1)/k), and gk(z) = ∏
k−1
v=0 ε−vg(εvz) and 0 ≤ µ ≤ λ ≤ 1. A function f ∈ A is

said to be in the class K(k)
s (λ ,µ,ϕ) if

zk f ′(z)+(λ −µ +2λ µ)zk+1 f ′′(z)+λ µzk+2 f ′′′(z)
gk(z)

≺ ϕ(z), z ∈ D,

holds for some postive integer k.
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For k = 2, we have the class K(2)
s (λ ,µ,ϕ) :=Ks(λ ,µ,ϕ) which was discussed by

Goyal et al.[16].

The following lemmas are needed to prove the results later.

Lemma 3.1. [54] If g(z) = z+∑
∞
n=2 bnzn ∈ S∗((k−1)/k), then

Gk(z) =
gk(z)
zk−1 = z+

∞

∑
n=2

Bnzn ∈ S∗. (3.4)

Lemma 3.2. [46] Let f (z) = 1+∑
∞
k=1 ckzk be analytic in D and g(z) = 1+∑

∞
k=1 dkzk

be analytic and convex in D. If f ≺ g, then

|ck| ≤ |d1| where k ∈ N := {1,2,3, . . .}.

We first prove the inclusion relationships for the class K(k)
s (λ ,µ,ϕ).

Theorem 3.6. Let 0 ≤ µ ≤ λ ≤ 1 and ϕ be an analytic normalized function with

positive real part. Then

K(k)
s (λ ,µ,ϕ)⊂K.

Proof. Consider f ∈ K(k)
s (λ ,µ,ϕ). By Definition 3.8, we have

zk f ′(z)+(λ −µ +2λ µ)zk+1 f ′′(z)+λ µzk+2 f ′′′(z)
gk(z)

≺ ϕ(z),

which can be written as

zF ′(z)
Gk(z)

≺ ϕ(z)
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where

F ′(z) = f ′(z)+(λ −µ +2λ µ)z f ′′(z)+λ µz2 f ′′′(z) (3.5)

and Gk(z) is defined in (3.4). Integrating F ′(z) in (3.5) leads to

F(z) =
∫ z

0
F ′(t) dt

=
∫ z

0

[
f ′(t)+(λ −µ +2λ µ)t f ′′(t)+λ µz2 f ′′′(t)

]
dt

=
∫ z

0
f ′(t) dt +(λ −µ +2λ µ)

∫ z

0
t f ′′(t) dt +

∫ z

0
λ µt2 f ′′′(t) dt

= f (z)− f (0)+(λ −µ +2λ µ)
∫ z

0
t f ′′(t) dt +λ µ

[[
t2 f ′′(t)

]∣∣∣z
0
−2

∫ z

0
t f ′′(t) dt

]

= f (z)+(λ −µ)
∫ z

0
t f ′′(t) dt +λ µz2 f ′′(z)

= f (z)+(λ −µ)

[
t f ′(t)− f (t)

]∣∣∣∣∣
z

0

+λ µz2 f ′′(z)

= f (z)+(λ −µ)(z f ′(z)− f (z))+λ µz2 f ′′(z)

= (1−λ +µ) f (z)+(λ −µ)z f ′(z)+λ µz2 f ′′(z).

Thus

F(z) = (1−λ +µ) f (z)+(λ −µ)z f ′(z)+λ µz2 f ′′(z).

Since ℜ {ϕ(z)}> 0, we have

ℜ

{
zF ′(z)
Gk(z)

}
> 0.

Also, since Gk(z) ∈ S∗ (by Lemma 3.1), by Definition 1.6, we deduce that

F(z) = (1−λ +µ) f (z)+(λ −µ)z f ′(z)+λ µz2 f ′′(z) ∈ K.
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In order to show f ∈ K, we consider three cases:

Case 1: µ = λ = 0. It is then obvious that f = F ∈ K.

Case 2: µ = 0, λ 6= 0. Then we obtain

F(z) = (1−λ ) f (z)+λ z f ′(z). (3.6)

Divide all the terms by λ z in (3.6), we obtain

f ′(z)+
(1−λ ) f (z)

λ z
=

F(z)
λ z

. (3.7)

To solve equation (3.7), an integrating factor

e
∫ (1−λ )dz

λ z = e
1−λ

λ

∫ dz
z = (elnz)

1−λ

λ = z(1/λ )−1

is needed. Multiply z(1/λ )−1 in (3.7), we have

z(1/λ )−1

(
f ′(z)+

(1−λ ) f (z)
λ z

)
=

z(1/λ )−1F(z)
λ z

(
z(1/λ )−1 f (z)

)′
=

z(1/λ )−2F(z)
λ

.

Solving for f (z), we obtain

f (z) =
z1−1/λ

λ

∫ z

0
t(1/λ )−2F(t) dt.
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Taking γ = (1/λ )−1, we have

f (z) =
1+ γ

zγ

∫ z

0
F(t)tγ−1 dt.

Since ℜ{γ}= ℜ{(1/λ )−1} ≥ 0, by using Theorem 2.3, we conclude that f ∈ K.

Case 3: 0 < µ ≤ λ ≤ 1. Then we have

F(z) = (1−λ +µ) f (z)+(λ −µ)z f ′(z)+λ µz2 f ′′(z) ∈ K.

Let G(z) = 1
(1−λ+µ)F(z), so G(z) ∈ K. Then

G(z) = f (z)+αz f ′(z)+β z2 f ′′(z) (3.8)

where α = λ−µ

1−λ+µ
and β = λ µ

1−λ+µ
. Consider δ > 0 and ν > 0 satisfying

δ +ν = α−β and δν = β .

The equation (3.8) can be written as

G(z) = f (z)+(δ +ν +δν)z f ′(z)+δνz2 f ′′(z).

Let p(z) = f (z)+δ z f ′(z), then

p(z)+νzp′(z) = f (z)+(δ +ν +δν)z f ′(z)+δνz2 f ′′(z) = G(z).
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On the other hand, p(z)+νzp′(z) = νz1−1/ν

(
z1/ν p(z)

)′
. So,

G(z) = νz1−1/ν

[
δ z1+(1/ν)−1/δ

(
z1/δ f (z)

)′]′
.

Hence

δ z1+(1/ν)−1/δ

(
z1/δ f (z)

)′
=

1
ν

∫ z

0
w(1/ν)−1G(w)dw.

Multiply by (1+ν) both sides and divide by z1/ν to get

(1+ν)δ z1−1/δ

(
z1/δ f (z)

)′
=

1+1/ν

z1/ν

∫ z

0
w(1/ν)−1G(w)dw := H(z).

Taking γ = 1/ν , then ℜ{γ} ≥ 0, and by using Theorem 2.3, we conclude that H ∈ K.

Further,

(1+ν)z1/δ f (z) =
1
δ

∫ z

0
t(1/δ )−1H(t)dt.

Multiply by (1+δ ) both sides and divide by z1/δ to obtain

(1+δ )(1+ν) f (z) =
1+1/δ

z1/δ

∫ z

0
t(1/δ )−1H(t)dt.

Taking γ = 1/δ , then ℜ{γ} ≥ 0, and by using Theorem 2.3, we conclude that f ∈

K.

Next, we give the coefficient estimates of functions in the class K(k)
s (λ ,µ,ϕ).

Theorem 3.7. Let 0 ≤ µ ≤ λ ≤ 1 and ϕ(z) is a normalized analytic convex function
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in D. If f ∈ K(k)
s (λ ,µ,ϕ), then

|an| ≤
1

1+(n−1)(λ −µ +nλ µ)

(
1+
|ϕ ′(0)|(n−1)

2

)
, n ∈ N.

Proof. From the definition of K(k)
s (λ ,µ,ϕ) , we know that there exists a function with

positive real part p such that

p(z) =
zF ′(z)
Gk(z)

where F ′(z) = f ′(z)+(λ −µ +2λ µ)z f ′′(z)+λ µz2 f ′′′(z) and Gk(z) = z+∑
∞
n=2 Bnzn.

Hence, we have

z f ′(z)+ z2 f ′′(z)(λ −µ +2λ µ)+λ µz3 f ′′′(z) = p(z)Gk(z). (3.9)

Expanding both sides of (3.9), we obtain

z+
∞

∑
n=2

nanzn +(λ −µ +2λ µ)
∞

∑
n=2

n(n−1)anzn +λ µ

∞

∑
n=2

n(n−1)(n−2)anzn

= z+
∞

∑
n=2

Bnzn +
∞

∑
n=1

pnzn+1 +

(
∞

∑
n=1

pnzn

)(
∞

∑
n=2

Bnzn

)
.

Comparing the coefficient of zn, we get

nan
[
1+(n−1)(λ −µ +nλ µ)

]
= Bn + pn−1 + p1Bn−1 + · · ·+ pn−2B2. (3.10)

Since Gk(z) is starlike, we have

|Bn| ≤ n. (3.11)
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Also, by Lemma 3.2, we know that

|pn|=

∣∣∣∣∣ p(n)(0)n!

∣∣∣∣∣≤ |ϕ ′(0)| (n ∈ N). (3.12)

Combining (3.10), (3.11) and (3.12), we obtain

n|an|
[
1+(n−1)(λ −µ +nλ µ)

]
≤ n+ |ϕ ′(0)|+ |ϕ ′(0)|

n−1

∑
k=2

k.

Note that
n−1

∑
k=2

k =
n−2

2

[
2+(n−1)

]
=

(n−2)(n+1)
2

.

Hence, we obtain

|an| ≤
1

1+(n−1)(λ −µ +nλ µ)

(
1+
|ϕ ′(0)|(n−1)

2

)
.

For µ = 0 in Definition (3.8), we have the class K(λ ,0,ϕ := K(k)
s (λ ,ϕ) which is

defined as

K(k)
s (λ ,ϕ) =

{
f ∈ A :

zk f ′(z)+λ zk+1 f ′′(z)
gk(z)

≺ ϕ(z), z ∈ D

}
.

Therefore, the corresponding coefficient estimate is by setting µ = 0 in Theorem (3.7)

yield

Corollary 3.1. If f = z+∑
∞
n=2 anzn ∈ K(k)

s (λ ,ϕ), then

|an| ≤
1

1+λ (n−1)

(
1+
|ϕ ′(0)|(n−1)

2

)
, n ∈ N.
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Furthermore, by setting λ = 0= µ in Definition (3.8), we have the classK(k)
s which

is defined as

K(k)
s =

{
f ∈ A :

zk f ′(z)
gk(z)

≺ ϕ(z), z ∈ D

}
.

Set λ = 0 in Corollary 3.1 will yield

Corollary 3.2. If f = z+∑
∞
n=2 anzn ∈ K(k)

s (ϕ), then

|an| ≤
(

1+
|ϕ ′(0)|(n−1)

2

)
, n ∈ N.

The Fekete-Szegö coefficient functional for normalized analytic univalent func-

tions is well known for its rich history in the theory of geometric function theory. This

functional also arises naturally in the investigation of the univalency of analytic func-

tions. A classical theorem of Fekete and Szegö [11] states that, for f ∈ S,

|a3−µa2
2|=



3−4µ if µ ≤ 0,

1+2e−2µ/(1−µ) if 0≤ µ < 1

4µ−3 if µ > 1

. (3.13)

This inequality is sharp for each µ. Later, Pfluger [43] considered the problem when µ

is a complex number. He showed that the inequality (3.13) holds for complex µ such

that ℜ µ/(1−µ)≥ 0. Keogh and Merkes [20], Koepf [22] and London [28] obtained

the solution of the Fekete-Szegö problem for the class of close-to-convex functions.

In this section, we obtain the Fekete-Szegö inequality for functions inK(k)
s (λ ,µ,ϕ).

To prove our result, the following lemmas are needed.
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Lemma 3.3. [20] If p(z) = 1+ c1z+ c2z2 + . . . is a function with positive real part,

then for any complex number µ,

|c2−µc2
1| ≤ 2max{1, |2µ−1|}.

This inequality is sharp for the Mobius function, m(z) = (1+ z)/(1− z) if |2µ−1| ≥ 1

and for m(z2) = (1+ z2)/(1− z2) if |2µ−1| ≤ 1.

Lemma 3.4. [22] Let g(z) = z+b2z2 +b3z3 + . . . ∈ S∗. Then, for any λ ∈ C,

|b3−λb2
2| ≤max{1, |3−4λ |}.

This inequality is sharp for the Koebe function, k(z) = z/(1− z)2 if |3− 4λ | ≥ 1 and

for (k(z)2)1/2 = z/(1− z2) if |3−4λ | ≤ 1.

Theorem 3.8. Let ϕ(z) = 1+q1z+q2z2 + . . . be a normalized analytic function with

positive real part on D. For a function f (z) = z+a2z2+a3z3+ ... belonging to the class

K(k)
s (λ ,µ,ϕ) and δ ∈ C, the following estimate holds

|a3−δa2
2| ≤

max{1, |3−4α|}+q1 max{1, |2β −1|}
3(1+2λ −2µ +6λ µ)

+2q1

(
1

3(1+2λ −2µ +6λ µ)
− µ

2(1+λ −µ +2λ µ)2

)

where

α =
3δ (1+2λ −2µ +6λ µ)

4(1+λ −µ +2λ µ)

and

β =
1
2

(
1− q2

q1
−

3δq2
2d2

1(1+2λ −2µ +6λ µ)

4(1+λ −µ +2λ µ)2)

)
.
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Proof. Since f ∈ K(k)
s (λ ,µ,ϕ), then there exists an analytic Schwarz function ω with

ω(0) = 0 and |ω(z)|< 1 in D such that

zk f ′(z)+ zk+1 f ′′(z)(λ −µ +2λ µ)+λ µzk+2 f ′′′(z)
gk(z)

= ϕ(ω(z)). (3.14)

Define the function h by

h(z) =
1+ω(z)
1−ω(z)

= 1+d1z+d2z2 + · · · .

Since ω is a Schwarz function, we see that ℜ{h(z)}> 0 and h(0) = 1. Also, we have

ϕ(ω(z)) = ϕ

(
h(z)−1
h(z)+1

)

= ϕ

(
d1z+d2z2 + . . .

2+d1z+d2z2 + . . .

)

= ϕ

(
1
2

d1z+
1
2

(
d2−

d2
1

2

)
z2 + . . .

)

= 1+
1
2

q1d1z+
1
2

q1

(
d2−

d2
1

2

)
z2 +

1
4

q2d2
1z2 + · · · (3.15)

The series expansion of

zk f ′(z)+ zk+1 f ′′(z)(λ −µ +2λ µ)+λ µzk+2 f ′′′(z)
gk(z)

is given by

1+(2a2(1+λ +2λ µ−µ)−B2)z+

(3a3(1+2λ +6λ µ−2µ)−2a2(1+λ +2λ µ−µ)B2 +B2
2−B3)z2 + · · · . (3.16)
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By comparing (3.15) and (3.16), we have

a2 =
2B2 +q1d1

4(1+λ −µ +2λ µ)
and a3 =

2B2q1d1 +2q1

(
d2−

d2
1

2

)
+q2d2

1 +4B3

12(1+2λ −2µ +6λ µ)
.

Therefore, we have

a3−δa2
2 =

1
3(1+2λ −2µ +6λ µ)

(B3−αB2
2)+

q1

6(1+2λ −2µ +6λ µ)
(d2−βd2

1)

+
B2q1d1

2

(
1

3(1+2λ −2µ +6λ µ)
− δ

2(1+λ −µ +2λ µ)2

)

where

α =
3δ (1+2λ −2µ +6λ µ)

4(1+λ −µ +2λ µ)2

and

β =
1
2

(
1− q2

q1
−

3δq2
2d2

1(1+2λ −2µ +6λ µ)

4(1+λ −µ +2λ µ)2

)
.

Taking modulus both sides, we have

|a3−δa2
2|=

∣∣∣∣∣ (B3−αB2
2)

3(1+2λ −2µ +6λ µ)
+

q1(d2−βd2
1)

6(1+2λ −2µ +6λ µ)

+
B2q1d1

2

(
1

3(1+2λ −2µ +6λ µ)
− µ

2(1+λ −µ +2λ µ)2

)∣∣∣∣∣
≤

|B3−αB2
2|

3(1+2λ −2µ +6λ µ)
+

q1|d2−βd2
1 |

6(1+2λ −2µ +6λ µ)

+
q1|B2||d1|

2

(
1

3(1+2λ −2µ +6λ µ)
− µ

2(1+λ −µ +2λ µ)2

)
.
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Using Lemma 3.3 and Lemma 3.4, we obtain

|a3−µa2
2| ≤

max{1, |3−4α|}
3(1+2λ −2µ +6λ µ)

+2
q1 max{1, |2β −1|

6(1+2λ −2µ +6λ µ)

+
q1|B2||d1|

2

(
1

3(1+2λ −2µ +6λ µ)
− µ

2(1+λ −µ +2λ µ)2

)
.

Also, using |B2| ≤ 2 and |d1| ≤ 2, the result is proved.

By setting ϕ(z)= (1+Az)/(1+Bz) in Definition 3.8, we get the classK(k)
s (λ ,µ,A,B)

where −1≤ B < A≤ 1.

Definition 3.9. A function f ∈A is said to be in the class K(k)
s (λ ,µ,A,B) if it satisfies

zk f ′(z)+ zk+1 f ′′(z)(λ −µ +2λ µ)+λ µzk+2 f ′′′(z)
gk(z)

≺ 1+Az
1+Bz

(3.17)

where 0≤ µ ≤ λ ≤ 1, g(z) = z+∑
∞
n=2 bnzn ∈ S∗(k−1

k ), k≥ 1 is a fixed positive integer

and gk(z) is defined by (3.3) with ε = e2πi/k.

Using the concept of subordination in Definition 1.5, we have

zk f ′(z)+ zk+1 f ′′(z)(λ −µ +2λ µ)+λ µzk+2 f ′′′(z)
gk(z)

=
1+Aω(z)
1+Bω(z)

.

where ω(z) is analytic in D and satisfy ω(0) = 0 and |ω(z)|< 1. Let

p(z) =
zk f ′(z)+ zk+1 f ′′(z)(λ −µ +2λ µ)+λ µzk+2 f ′′′(z)

gk(z)
.
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Then p(z)−1 = w(z)(A−Bp(z)). Taking absolute both sides, we obtain

|p(z)−1|< |A−Bp(z)|.

Therefore, it can seen that the condition in (3.17) is equivalent to

∣∣∣∣∣zk f ′(z)+ zk+1 f ′′(z)(λ −µ +2λ µ)+λ µzk+2 f ′′′(z)
gk(z)

−1
∣∣∣

<
∣∣∣A− B(zk f ′(z)+ zk+1 f ′′(z)(λ −µ +2λ µ)+λ µzk+2 f ′′′(z))

gk(z)

∣∣∣∣∣ (3.18)

We prove sufficient condition for functions to belong to the class K(k)
s (λ ,µ,A,B).

Theorem 3.9. Let 0≤ µ ≤ λ ≤ 1 and−1≤ B< A≤ 1. If f ∈A satisfies the inequality

(1+ |B|)
∞

∑
n=2

n[1+(n−1)(λ −µ +nλ µ)]|an|+(1+ |A|)
∞

∑
n=2
|Bn| ≤ A−B

and for n = 2,3, . . . the coefficients of Bn given by (3.4), then f ∈ K(k)
s (λ ,µ,A,B).

Proof. Recall that

F ′(z) = f ′(z)+(λ −µ +2λ µ)z f ′′(z)+λ µz2 f ′′′(z)

and

gk(z)
zk−1 = z+

∞

∑
n=2

Bnzn.

Now, let M denoted by
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M =

∣∣∣∣∣zF ′(z)− gk(z)
zk−1

∣∣∣∣∣−
∣∣∣∣∣− Agk(z)

zk−1 −BzF ′(z)

∣∣∣∣∣
=

∣∣∣∣∣z f ′(z)+(λ −µ +2λ µ)z2 f ′′(z)+λ µz3 f ′′′(z)−

(
z+

∞

∑
n=2

Bnzn

)∣∣∣∣∣
−

∣∣∣∣∣A
(

z+
∞

∑
n=2

Bnzn

)
−B[z f ′(z)+ z2 f ′′(z)(λ −µ +2λ µ)+λ µz3 f ′′′(z)]

∣∣∣∣∣
=

∣∣∣∣∣ ∞

∑
n=2

nanzn[1+(n−1)(λ −µ +nλ µ)]−
∞

∑
n=2

Bnzn

∣∣∣∣∣
−

∣∣∣∣∣(A−B)z+A
∞

∑
n=2

Bnzn−B
∞

∑
n=2

nanzn[1+(n−1)(λ −µ +nλ µ)]

∣∣∣∣∣.

Then, for |z|= r < 1, we have

M ≤
∞

∑
n=2

n[1+(n−1)(λ −µ +nλ µ)]|an|rn +
∞

∑
n=2
|Bn|rn

−

[
(A−B)r−|A|

∞

∑
n=2
|Bn|rn−|B|

∞

∑
n=2

n[1+(n−1)(λ −µ +nλ µ)]|an|rn

]

<

[
− (A−B)+(1+ |B|)

∞

∑
n=2

n[1+(n−1)(λ −µ +nλ µ)]|an|+(1+ |A|)
∞

∑
n=2
|Bn|

]
r

≤ 0.

From the above calculation, we obtain M < 0. Thus, we have

∣∣∣∣∣z f ′(z)+ z2 f ′′(z)(λ −µ +2λ µ)+λ µz3 f ′′′(z)− gk(z)
zk−1

∣∣∣∣∣
<

∣∣∣∣∣Agk(z)

zk−1 −B[z f ′(z)+ z2 f ′′(z)(λ −µ +2λ µ)+λ µz3 f ′′′(z)]

∣∣∣∣∣
which is equivalent to (3.18). Therefore, f ∈ K(k)

s (λ ,µ,A,B).
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Setting µ = 0 in Theorem 3.8, we get

Corollary 3.3. Let f ∈ A and −1≤ B < A≤ 1. If

(1+ |B|)
∞

∑
n=2

n[1+λ (n−1)]|an|+(1+ |A|)
∞

∑
n=2
|Bn| ≤ A−B,

where Bn given by (3.4), then f (z) ∈ K(k)
s (λ ,A,B).

Further setting λ = 0 in Corollary 3.3 , we obtain

Corollary 3.4. Let f ∈ A and −1≤ B < A≤ 1. If

(1+ |B|)
∞

∑
n=2

n|an|+(1+ |A|)
∞

∑
n=2
|Bn| ≤ A−B,

where Bn given by (3.4), then f ∈ K(k)
s (A,B).

Remark 3.1. By taking A= β ,B=−αβ in Corollary 3.4, we get the result obtained in

[55, Theorem 5]. In addition, by taking A = 1−2γ,B =−1 , we get the result obtained

in [49, Theorem 2].
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CHAPTER 4

CONCLUSION

Sufficient conditions to ensure starlikeness of analytic functions is an important

area of research in geometric function theory. This can be done by using the differential

inequalities, integral operators and others.

By using certain third-order differential inequality, sufficient conditions for an an-

alytic function f , defined on the unit disk D, to be starlike of order β , where 0≤ β < 1

is obtained. A new starlike function of order β which can be expressed in terms of the

triple integral is constructed by virtue of the third order differential inequality.

Furthermore, a new subclass of close-to-convex functions is studied and several

properties such as inclusion relationships, coefficient estimates, Fekete-Szegö inequal-

ity and sufficient conditions are obtained.
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